Basics on Dynamic Programming(DP) 2 - Matrix DP
第1类常见DP问题:Matrix DP
- state: f[x][y] 表示从起点走到坐标x,y
- function: 研究走到x,y这个点之前的一步
- initialize: 起点
- answer: 终点
1. Unique Paths - Leetcode 62
A robot is located at the top-left corner of a m x n grid (marked 'Start' in the diagram below).
The robot can only move either down or right at any point in time. The robot is trying to reach the bottom-right corner of the grid (marked 'Finish' in the diagram below).
How many possible unique paths are there?
DP思路:
- state: f[i][j] 代表了,从起点到达i,j这个点的路径方案之和
- function: f[i][j] = f[i - 1][j] + f[i][j - 1]
- intialize: f[i][0] 和 f[0][i] = 1, f[1][1] = 1 二维的矩阵的这种题目,一般初始化两条边
- answer: f[n-1][m-1]
二维代码:
int uniquePaths(int m, int n) {
vector<vector<int> > dp(m, vector<int>(n, 0)); //全0的二维数组
// intialize
for (int i = 0; i < m; i++) dp[i][0] = 1;
for (int i = 0; i < n; i++) dp[0][i] = 1;
for (int i = 1; i < m; i++) {
for (int j = 1; j < n; j++) dp[i][j] = dp[i - 1][j] + dp[i][j - 1];
}
return dp[m - 1][n - 1];
}
压缩一维:
int uniquePaths(int m, int n) {
vector<int> dp(n, 1); //全0的数组,只跟左,上有关系,所以可以压缩.都初始化为1
// intialize 已初始化
for (int i = 1; i < m; i++) {
for (int j = 1; j < n; j++) dp[j] = dp[j] + dp[j - 1];
}
return dp[n-1];
}
2. Unique Paths II - Leetcode 63
Follow up for "Unique Paths":
Now consider if some obstacles are added to the grids. How many unique paths would there be?
An obstacle and empty space is marked as 1 and 0 respectively in the grid.
For example,
There is one obstacle in the middle of a 3x3 grid as illustrated below.
[
[0,0,0],
[0,1,0],
[0,0,0]
]
The total number of unique paths is 2.
Note: m and n will be at most 100.
直接压缩:
int uniquePathsWithObstacles(vector<vector<int> > &obstacleGrid) {
int m = obstacleGrid.size();
int n = obstacleGrid[0].size();
vector<int> dp(n, 0); //都初始化为0,有的是1障碍,需处理
// intialize
for (int i = 0; i < n; i++) {
if (obstacleGrid[0][i] == 1) break; //从这儿往后都是0了,不用赋值了
dp[i] = 1;
}
for (int i = 1; i < m; i++) {
//这里跟上题有区别,因为有障碍了,不能从第2个开始!
for (int j = 0; j < n; j++)
if (obstacleGrid[i][j] == 1)
dp[j] = 0;
else
dp[j] = dp[j] + (j==0 ? 0 : dp[j-1]); //从第1个开始的话,注意越界!!
}
return dp[n-1];
}
3. Minimum Path Sum - Leetcode 64
Given a m x n grid filled with non-negative numbers, find a path from top left to bottom right which minimizes the sum of all numbers along its path.
Note: You can only move either down or right at any point in time.
- state: f[i][j] 代表了,从起点到达i,j这个点的最短路
- function: f[i][j] = min(f[i - 1][j], f[i][j - 1]) + a[i][j];
- intialize: f[i][0] 和 f[0][i]
- answer: f[n][m]
初始化一个二维的动态规划时,初始化第0行和第0列
int minPathSum(vector<vector<int> > &grid) {
int rows = grid.size();
if (rows == 0) return 0;
int cols = grid[0].size();
if (cols == 0) return 0;
vector<vector<int> > dp(rows, vector<int>(cols, INT_MAX));
dp[0][0] = grid[0][0];
for (int i = 1; i < cols; i++) { // 初始化第1行 和第1列
dp[0][i] = dp[0][i - 1] + grid[0][i];
}
for (int i = 1; i < rows; i++) {
dp[i][0] = dp[i - 1][0] + grid[i][0];
}
for (int i = 1; i < rows; i++) {
for (int j = 1; j < cols; j++) {
// 按顺序推,无法压缩空间到一维
dp[i][j] = min(dp[i][j - 1], dp[i - 1][j]) + grid[i][j];
}
}
return dp[rows-1][cols-1];
}
压缩:
int minPathSum(vector<vector<int> > &grid) {
int m = grid.size();
if (m == 0) return 0;
int n = grid[0].size();
if (n == 0) return 0;
vector<int> dp(n);
// initialize
dp[0] = grid[0][0];
for (int i = 1; i < n; i++) dp[i] = dp[i - 1] + grid[0][i];
for (int i = 1; i < m; i++) {
dp[0] += grid[i][0];
for (int j = 1; j < n; j++) dp[j] = min(dp[j - 1], dp[j]) + grid[i][j];
}
return dp[n - 1];
}